
Distributed Systems
LECTURE 26

Consistency protocols

Distributed Operating System

Consistency Protocols

 This is a specific implementation of a

consistency model.

 The most widely implemented

models are:

1. Sequential Consistency.

2. Weak Consistency (with sync

variables).

3. Atomic Transactions.

Distributed Operating System

Primary-Based Protocols

 Each data item is associated with a

“primary” replica.

 The primary is responsible for

coordinating writes to the data item.

 There are two types of Primary-Based

Protocol:

1. Remote-Write.

2. Local-Write.

Distributed Operating System

Remote-Write Protocols

• With this protocol, all writes are performed at a single (remote) server.

• This model is typically associated with traditional client/server systems.

Distributed Operating System

Primary-Backup Protocol: A

Variation

Writes are still centralised, but reads

are now distributed. The primary

coordinates writes to each of the

backups. Distributed Operating System

The Bad and Good of Primary-

Backup

 Bad: Performance!

 All of those writes can take a long time

(especially when a “blocking write protocol” is

used).

 Using a non-blocking write protocol to handle the

updates can lead to fault tolerant problems

(which is our next topic).

 Good: The benefit of this scheme is, as the

primary is in control, all writes can be sent to

each backup replica IN THE SAME ORDER,

making it easy to implement sequential

consistency.
Distributed Operating System

Local-Write Protocols

 In this protocol, a single copy of the data

item is still maintained.

 Upon a write, the data item gets transferred

to the replica that is writing.

 That is, the status of primary for a data item

is transferable.

 This is also called a “fully migrating

approach”.

Distributed Operating System

Local-Write Protocols

Example

Primary-based local-write protocol in which a single copy is
migrated between processes (prior to the read/write). Distributed Operating System

Local-Write Issues

 The big question to be answered by any

process about to read from or write to the

data item is:

◦ “Where is the data item right now?”

 It is possible to use some of the dynamic

naming technologies studied earlier in this

course, but scaling quickly becomes an

issue.

 Processes can spend more time actually

locating a data item than using it!
Distributed Operating System

Local-Write Protocols: A Variation

Primary-backup protocol in which the primary migrates to
the process wanting to perform an update, then updates
the backups. Consequently, reads are much more
efficient.

Distributed Operating System

Replicated-Write Protocols

 With these protocols, writes can be
carried out at any replica.

 Another name might be: “Distributed-
Write Protocols”

 There are two types:
1. Active Replication.

2. Majority Voting (Quorums).

Distributed Operating System

Active Replication

 A special process carries out the update
operations at each replica.

 Lamport’s timestamps can be used to
achieve total ordering, but this does not
scale well within Distributed Systems.

 An alternative/variation is to use a
sequencer, which is a process that assigns
a unique ID# to each update, which is then
propagated to all replicas.

 This can lead to another problem:
replicated invocations. Distributed Operating System

Active Replication: The

Problem

The problem of replicated invocations – ‘B’ is a replicated
object (which itself calls ‘C’). When ‘A’ calls ‘B’, how do
we ensure ‘C’ isn’t invoked three times?

Distributed Operating System

Active Replication: Solutions

a) Using a coordinator for ‘B’, which is responsible for forwarding an
invocation request from the replicated object to ‘C’.

b) Returning results from ‘C’ using the same idea: a coordinator is
responsible for returning the result to all ‘B’s. Note the single result
returned to ‘A’. Distributed Operating System

Quorum-Based Protocols

 Clients must request and acquire permissions
from multiple replicas before either
reading/writing a replicated data item.

 Consider this example:
◦ A file is replicated within a distributed file system.

◦ To update a file, a process must get approval from a
majority of the replicas to perform a write. The
replicas need to agree to also perform the write.

◦ After the update, the file has a new version #
associated with it (and it is set at all the updated
replicas).

◦ To read, a process contacts a majority of the replicas
and asks for the version # of the files. If the version
is the same, then the file must be the most recent
version, and the read can proceed.

Distributed Operating System

Quorum Protocols:

Generalisation

NR + NW > N

NW > N/2

Distributed Operating System

Quorum-Based Protocols

Three examples of the voting algorithm:

a) A correct choice of read and write set

b) A choice that may lead to write-write conflicts

c) A correct choice, known as ROWA (read one, write all)
Distributed Operating System

Cache-Coherence Protocols

 These are a special case, as the cache is
typically controlled by the client not the
server.

 Coherence Detection Strategy:
◦ When are inconsistencies actually detected?
 Statically at compile time: extra instructions inserted.

 Dynamically at runtime: code to check with the server.

 Coherence Enforcement Strategy
◦ How are caches kept consistent?
 Server Sent: invalidation messages.

 Update propagation techniques.

 Combinations are possible.
Distributed Operating System

Orca

A simplified stack object in Orca, with internal data and two
operations.

OBJECT IMPLEMENTATION stack;

 top: integer; # variable indicating the top

 stack: ARRAY[integer 0..N-1] OF integer # storage for the stack

 OPERATION push (item: integer) # function returning nothing

 BEGIN

 GUARD top < N DO

 stack [top] := item; # push item onto the stack

 top := top + 1; # increment the stack pointer

 OD;

 END;

 OPERATION pop():integer; # function returning an integer

 BEGIN

 GUARD top > 0 DO # suspend if the stack is empty

 top := top – 1; # decrement the stack pointer

 RETURN stack [top]; # return the top item

 OD;

 END;

BEGIN

 top := 0; # initialization

END;

Distributed Operating System

Management of Shared Objects in

Orca

Four cases of a process P performing an
operation on an object O in Orca. Distributed Operating System

Casually-Consistent Lazy

Replication

The general organization of a distributed data store. Clients
are assumed to also handle consistency-related

communication. Distributed Operating System

What about Writes to the Cache?

 Read-only Cache: updates are performed
by the server (i.e., pushed) or by the client
(i.e., pulled whenever the client notices that
the cache is stale).

 Write-Through Cache: the client modifies
the cache, then sends the updates to the
server.

 Write-Back Cache: delay the propagation
of updates, allowing multiple updates to be
made locally, then sends the most recent to
the server (this can have a dramatic
positive impact on performance).

Distributed Operating System

Processing Read Operations

Performing a read operation at a local copy.
Distributed Operating System

Processing Write Operations

Performing a write operation at a local copy.
Distributed Operating System

Summary (1)

(Consistency and Replication)
 Reasons for replication: improved

performance, improved reliability.

 Replication can lead to inconsistencies …

 How best can we propagate updates so
that these inconsistencies are not noticed?

 With “best” meaning “without crippling
performance”.

 The proposed solutions resolve around the
relaxation of any existing consistency
constraints.

Distributed Operating System

Summary (2)

(Consistency and Replication)

 Various consistency models have been proposed:

 Strict, Sequential, Causal, FIFO concern

themselves with individual reads/writes to data

items.

 Weaker models introduce the notion of

synchronisation variables: Release, Entry

concern themselves with a group of reads/writes.

 These models are known as “Data-Centric”.

 “Client Centric” models also exist:

◦ Concerned with maintaining consistency for a single

clients’ access to the distributed data-store.

◦ The Eventual Consistency model is an example.
Distributed Operating System

Summary (3)

(Consistency and Replication)

 To distribute (or “propagate”) updates, we

draw a distinction between WHAT is

propagated, WHERE it is propagated and

by WHOM.

 We looked at various Distribution Protocols

and Consistency Protocols designed to

facilitate the propagation of updates.

 The most widely implemented schemes are

those that support Sequential Consistency

or Weak Consistency with Synchronisation

Variables.
Distributed Operating System

ASSIGNMENT

 Q: Explain all consistency protocols in

detail.

Distributed Operating System

